Math 2050, HW 4, Due: 6 Nov

(1) Let $x_{1}<x_{2}$ be two given real numbers. Define the sequence inductively by

$$
x_{n}=\frac{1}{3} x_{n-1}+\frac{2}{3} x_{n-2}
$$

for all $n>2$, show that $\left\{x_{n}\right\}$ is convergent and find the limit.
(2) If $x_{1}=2$ and $x_{n+1}=2+\frac{1}{x_{n}}$ for all $n \geq 1$, show that $\left\{x_{n}\right\}$ is a con tractive sequence, i.e. there exists $C \in[0,1)$ such that for all $n \geq 2$,

$$
\left|x_{n+1}-x_{n}\right| \leq C\left|x_{n}-x_{n-1}\right| .
$$

Show that $\left\{x_{n}\right\}$ is convergent and find the limit.
(3) Find an example of sequence $\left\{x_{n}\right\}$ such that it is not a Cauchy sequence but for any fixed $p \in \mathbb{N}, x_{n+p}-x_{n} \rightarrow 0$ as $n \rightarrow+\infty$.
(4) Show that if $x_{n}>0$ for all $n \in \mathbb{N}$, then $x_{n} \rightarrow 0$ as $n \rightarrow+\infty$ if and only if $x_{n}^{-1} \rightarrow+\infty$ as $n \rightarrow+\infty$.

